Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(2): e0374821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35384697

RESUMO

Integration site landscapes, clonal dynamics, and latency reversal with or without vpr were compared in HIV-1-infected Jurkat cell populations, and the properties of individual clones were defined. Clones differed in fractions of long terminal repeat (LTR)-active daughter cells, with some clones containing few to no LTR-active cells, while almost all cells were LTR active for others. Clones varied over 4 orders of magnitude in virus release per active cell. Proviruses in largely LTR-active clones were closer to preexisting enhancers and promoters than low-LTR-active clones. Unsurprisingly, major vpr+ clones contained fewer LTR-active cells than vpr- clones, and predominant vpr+ proviruses were farther from enhancers and promoters than those in vpr- pools. Distances to these marks among intact proviruses previously reported for antiretroviral therapy (ART)-suppressed patients revealed that patient integration sites were more similar to those in the vpr+ pool than to vpr- integrants. Complementing vpr-defective proviruses with vpr led to the rapid loss of highly LTR-active clones, indicating that the effect of Vpr on proviral populations occurred after integration. However, major clones in the complemented pool and its vpr- parent population did not differ in burst sizes. When the latency reactivation agents prostratin and JQ1 were applied separately or in combination, vpr+ and vpr- population-wide trends were similar, with dual-treatment enhancement being due in part to reactivated clones that did not respond to either drug applied separately. However, the expression signatures of individual clones differed between populations. These observations highlight how Vpr, exerting selective pressure on proviral epigenetic variation, can shape integration site landscapes, proviral expression patterns, and reactivation properties. IMPORTANCE A bedrock assumption in HIV-1 population modeling is that all active cells release the same amount of virus. However, the findings here revealed that when HIV-infected cells expand into clones, each clone differs in virus production. Reasoning that this variation in expression patterns constituted a population of clones from which differing subsets would prevail under differing environmental conditions, the cytotoxic HIV-1 protein Vpr was introduced, and population dynamics and expression properties were compared in the presence and absence of Vpr. The results showed that whereas most clones produced fairly continuous levels of virus in the absence of Vpr, its presence selected for a distinct subset of clones with properties reminiscent of persistent populations in patients, suggesting the possibility that the interclonal variation in expression patterns observed in culture may contribute to proviral persistence in vivo.


Assuntos
Soropositividade para HIV , HIV-1 , HIV-1/fisiologia , Humanos , Células Jurkat , Provírus/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
2.
Molecules ; 21(4): 445, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27089314

RESUMO

Buruli ulcer (BU) is the third most prevalent mycobacteriosis, after tuberculosis and leprosy. The currently recommended combination of rifampicin-streptomycin suffers from side effects and poor compliance, which leads to reliance on local herbal remedies. The objective of this study was to investigate the antimycobacterial properties and toxicity of selected medicinal plants. Sixty-five extracts from 27 plant species were screened against Mycobacterium ulcerans and Mycobacterium smegmatis, using the Resazurin Microtiter Assay (REMA). The cytotoxicity of promising extracts was assayed on normal Chang liver cells by an MTT assay. Twenty five extracts showed activity with minimal inhibitory concentration (MIC) values ranging from 16 µg/mL to 250 µg/mL against M. smegmatis, while 17 showed activity against M. ulcerans with MIC values ranging from 125 µg/mL to 250 µg/mL. In most of the cases, plant extracts with antimycobacterial activity showed no cytotoxicity on normal human liver cells. Exception were Carica papaya, Cleistopholis patens, and Polyalthia suaveolens with 50% cell cytotoxic concentrations (CC50) ranging from 3.8 to 223 µg/mL. These preliminary results support the use of some West African plants in the treatment of Buruli ulcer. Meanwhile, further studies are required to isolate and characterize the active ingredients in the extracts.


Assuntos
Antibacterianos/administração & dosagem , Úlcera de Buruli/tratamento farmacológico , Mycobacterium ulcerans/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , África Ocidental , Antibacterianos/química , Úlcera de Buruli/microbiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Mycobacterium ulcerans/patogenicidade , Extratos Vegetais/química , Plantas Medicinais/química
3.
Data Brief ; 7: 1124-30, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27115026

RESUMO

This article contains data on in vitro antimycobacterial activity and cytotoxicity of hydroethanolic crude extracts from five selected medicinal plant species traditionally used to treat tuberculosis in Ghanaian ethnomedicine, see "Medicinal plants used to treat TB in Ghana" [1]. The interpretation and discussion of these data and further extensive insights into drug discovery against tuberculosis from natural products of plant biodiversity can be found in "Antimycobacterial and cytotoxic activity of selected medicinal plant extracts" [2].

4.
J Ethnopharmacol ; 182: 10-5, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26875647

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. MATERIAL AND METHODS: The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. RESULTS: Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3µg/mL against M. tuberculosis; Strain H37Ra (ATCC® 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient=0.8). CONCLUSION: The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Magnoliopsida , Mycobacterium tuberculosis/efeitos dos fármacos , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Folhas de Planta , Plantas Medicinais
5.
Int J Mycobacteriol ; 5 Suppl 1: S106-S107, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28043491

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a serious public health challenge towards which new hits are urgently needed. Medicinal plants remains a major source of new ligands against global infectious illnesses. In our laboratories, we are currently investigating locally used ethnobotanicals for novel compounds against zoonotic tuberculosis. The microplate alamar blue assay (MABA) was used to study the anti-TB activity while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients (R2) were used to compare the relationship between antimycobacterial activity of the eight crude extracts against nonpathogenic strains and the pathogenic Mycobacterium bovis. Minimum inhibitory concentration (MICs) values indicated that all the eight tested medicinal plant species had activity against all the three tested mycobacterial strains. Minimum inhibitory concentration value as low as 19.5µg/mL was observed against non-pathogenic strains M. bovis. Activity of the crude extracts against M. aurum was the best predictor of natural product activity against the pathogenic Mycobacterium bovis strain, with a correlation coefficient value (R2) of 0.1371. Results obtained from the current study validate, in part, the traditional utilization of the tested medicinal plants against tuberculosis. The unripe fruits from Solanum torvum are a potential source of safe and efficacious anti-TB crude drugs as well as a source for natural compounds that act as new anti-infection agents, and thus deserve further investigation towards development of a new class of molecules with activity against sensitive and drug resistant strains of M. bovis.

6.
Int J Mycobacteriol ; 5 Suppl 1: S206-S207, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28043557

RESUMO

OBJECTIVE/BACKGROUND: Mycobacterial infections including tuberculosis, leprosy, and buruli ulcer are among the most prevalent, debilitating, and deadly tropical diseases, especially in Sub-Saharan Africa. The development of drug resistance to the currently available drugs and the poor compliance emphasize the need for new chemotherapeutic agents. This study was designed to evaluate the in vitro activity of Cleistopholis patens, Annona reticulata, and Greenwayodendron suaveolens against Mycobacterium smegmatis. The safety on normal liver cells was also assessed. METHODS: The crude extracts, fractions, and subfractions were tested against M. smegmatis and for cell cytotoxicity on WRL-68, normal human hepatocyte using microdilution resazurin-based assays. The phytochemical screening was performed using standard methods. RESULTS: Most of the extracts, fractions, and subfractions inhibited the growth of M. smegmatis with minimum inhibitory concentration (MIC) values ranging from 6.25µg/mL to 125µg/mL. The subfractions P12 and P29 from G. suaveolens twig were more potent with MIC values of 6.25µg/mL and 25µg/mL, respectively. Fruit crude extract and root CH2Cl2 fraction from A. reticulata also showed activity with MIC values of 50µg/mL and 25µg/mL, respectively. Crude extracts from the twig and stem bark of C. patens displayed inhibition at MIC values of 125µg/mL and 100µg/mL, respectively. Majority of active extracts showed no cell cytotoxicity, except the extract from C. patens with IC50 ranging from 41.40µg/mL to 93.78µg/mL. The chemical investigation of the promising extracts revealed the presence of phenols, alkaloids, glycosides, triterpenes, and acetogenins. CONCLUSION: The results achieved from this preliminary antimycobacterial drug discovery study supported the traditional claims of C. patens, A. reticulata, and G. suaveolens in the treatment of mycobacterial infections. Meanwhile, further fractionation is required to characterize the active ingredients.

7.
Int J Mycobacteriol ; 5 Suppl 1: S204-S205, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28043556

RESUMO

AIM AND OBJECTIVES: Buruli ulcer (BU) is a neglected tropical disease caused by a mycobacteria, Mycobacterium ulcerans. The WHO recommended Rifampicin-Streptomycin combination side effects and poor compliance, leaves rural populations with no choice than to patronise indigenous remedies. This study is aimed at validating medicinal plants used in traditional medicine to treat BU by investigating the in vitro efficacy and safety as well as their composition in active molecules. METHODS: A short report-based survey was used to identify medicinal plants used traditionally for BU treatment. Maceration of collected plant samples in methanol, hydroethanolic, ethanol, dichloromethane, and hexane, resulted in a total of 67 extracts assessed for antimycobacteria activity against Mycobacterium smegmatis and Mycobacterium ulcerans using the Resazurin Microtiter Assay. The cytotoxicity effect of promising extracts was assessed on normal human liver cells using the MTT assay. The bio-guided fractionation of the promising extracts led to the isolation of active compounds. RESULTS: Majority of plants prepared as infusion, decoction, poultice, and macerate were administered topically. Significant antimycobacterial activity with MIC values ranging from 16 to 250µg/mL was recorded against M. smegmatis (25 extracts) and M. ulcerans (17 extracts).1 Most of antimycobacterial extracts showed no significant cytotoxicity against normal human hepatocytes.1 The isolation guided by the biological activity revealed nine compounds with significant in vitro anti-M. ulcerans activity (MIC=16-128µg/mL). CONCLUSIONS: The results completed support the use these plants in the indigenous knowledge against BU. Further analyses of active principles might lead to new drug toe fight against BU.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...